Section 7.5 part 1

7.5 The Symmetric and Alternating Groups

Cor 7.22. Grey finite group is isomorphic to a subgroup of S_{n}
Recall S_{n} - all bijective functions (permutations)

$$
\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}
$$

group operation is the composition of functions
Notation for $\sigma \in S_{n}$: $\left(\begin{array}{cccc}1 & 2 & \ldots . & n \\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{array}\right)$
Cycles - special elements of S_{n}
Notation: $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right) \quad a_{1} \ldots a_{k}$ ave all distinct

$$
k \leqslant u
$$

$$
\text { elements of the set }\{1, \ldots n\}
$$

lereaning: $\sigma\left(a_{1}\right)=a_{2} \quad \sigma\left(a_{2}\right)=a_{3} \ldots \quad O\left(a_{k-1}\right)=a_{k}, \quad \sigma\left(a_{k}\right)=a_{2}$

All other elements stay in their places:

$$
\sigma(b)=b \text { if } b \neq a_{i}
$$

Easy to see: $\left|\left(a_{1}, \ldots a_{k}\right)\right|=k$

- order of this element of S_{n}

Def $\sigma=\left(a_{1}, \ldots, a_{k}\right)$ and $T=\left(b_{1}, \ldots, b_{k}\right)$
are disjoint when they do not share elements,
Ex (125) and (34) are two disjoint cycles in S_{5} (also S_{17})

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 4 & 1
\end{array}\right)
$$

Th. 24 Every permutation can be written as a product of disjoint cymes in a unique way.

Th 7,23 Disjant cycles commute:
if $\sigma, \tau \in S_{n}$ are disjoint cycles, then $\sigma \tau=\tau \sigma$.
Pf $\sigma=\left(a_{1}, \ldots, a_{k}\right) \quad T=\left(b, \ldots, b_{r}\right)$
Let $1 \leq x \leq n$. Wanted: $\sigma(\tau(x))=\tau(\mathbb{}(x))$
If x is neither a_{i} nor b_{j}, then $G(x)=x ; \tau(x)=x$

$$
\sigma(\tau(x))=\tau(O(x))=x
$$

If $x=a_{i}$, then $x+b_{j} . \quad G(x)=a_{\ell}(l=i+1$ or $l=1) \quad \tau(x)=x$ $\tau\left(a_{i}\right)=a_{i}$

$$
\begin{aligned}
& \sigma(\tau(x))=\sigma(x)=a_{l} \\
& \tau(\sigma(x))=\tau\left(a_{l}\right)=a_{l}
\end{aligned}
$$

Pf (7.24) $\quad G \in S_{n}$

$$
\begin{gathered}
\left.a_{1} \in h 1, \ldots n\right\} \quad a_{2}=\sigma\left(a_{1}\right) \quad a_{3}=\sigma\left(a_{2}\right) \ldots \\
a_{1} \stackrel{\sigma}{\mapsto} a_{2} \stackrel{\sigma}{\mapsto} a_{3} \ldots a_{2} \stackrel{r}{\mapsto} a_{1}
\end{gathered}
$$

Pick another element bn, not from

would contradict the injectivity of σ this cycle

$$
b_{1} \stackrel{\sigma}{\mapsto} b_{2} \stackrel{\sigma}{\mapsto} \ldots \stackrel{\sigma}{\hookrightarrow} b_{r} \stackrel{\sigma}{\mapsto} b_{1}
$$

When all elements from $41, \ldots n y$ are either members of a cycle or are left on their places by σ, we see that O is the product of the eyches which we constructed.

Transpositions - cycles of length 2

$$
\begin{aligned}
& (a, b) \\
& a \mapsto b \\
& b \mapsto a
\end{aligned} \quad\left(\begin{array}{ccccc}
\ldots & a & \ldots & b & \ldots \\
\ldots & b & \ldots & a & \ldots
\end{array}\right)
$$

Th 7.26 Every permutation can be presented as a product of transpositions. (not necessarily disjoint)
If It suffices to present a cycle as a product of transpositions:

$$
\begin{aligned}
& \left(a_{1}, \ldots a_{k}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \ldots\left(a_{k-1} a_{k}\right) \\
& \begin{array}{l}
a_{1} \mapsto a_{2} \\
a_{1} \mapsto a_{3}
\end{array} \quad a_{1} \mapsto a_{2} a_{2} \mapsto a_{3} \quad \\
&
\end{aligned}
$$

Def A permutation is EVEN if it can be presented as a product of an even number of transpositions
Otherwise - ODD permutation.
Th 7.28 This parity is invariant (the definition is justified)

