Section 7.5 part 1

.5 The Symmetric and Alternating Groups
.5 The Symmetric and Alternating Groups Cor 7,22 - Every finite group is isomorphic to a subgroup of Sn
Recall Sn-all bijective functions (permutations)
group operation is the composition of functions
Notation for GESn: (G(1) G(2) G(n)
Cucles - special elements of Sn
Notation: (= (a, a2. ae) a. ae are all distinct elements of the set him his
Rén
Meaning: $G(a_i) = a_a$ $G(a_a) = a_b$. $G(a_{k-1}) = a_k$, $G(a_k) = a_1$
a, may may may as there elements start in their places:
5(b)=b if b + a.
Easy to see: \(\a_{15a_k}\) = k - order of this element of Sn

Def G=(a1,...,ak) and Z=(B1,...,bk)
are disjoint when they do not strake exements. Ex (125) and (34) are two disjoint cycles in S5 (also S17) (12345) Th7,24 Every permutation can be written as a product of disjoint cycles in a unique way. Th 7,23 D'isjoint cycles commute. if 0, ce Su are disjoint cycles, then 62=20. 77 G=(a,,,,a,) T=(B,,,,,br) 2et 15x5 n. Manted; 6(c(x)) = c(a(x)) If x is heither a; nor by, then G(x)=x; \(\cap{x}\)=x 8-2 (X)D) = 2 (X)D) = X

If $x=a_i$, then $x+b_i$. $G(x)=a_k$ (k=i+1 ox k=1) $\sigma(x)=x$ $\sigma(a_i)=a_i$

(C(X)) = (x) = ap $\mathcal{T}(G(x)) = \mathcal{T}(a_g) = a_g$

P\$ (7,24) GES,

 $a_1 \in h_1, ..., h_2$ $a_2 = b(a_1)$ $a_3 = b(a_2)$...

would contradict
the injectivity of o

a, coa coa coa, coa, coa,

Pick another element by, not from

this eyele

6, 56, 5 - 56, 6,

When all elements from his. In I are either members of a cycle or are left on their places by 5, we see that 5 is the product of the cycles which we constructed.

Transpositions - cycles of length 2 (a, b) (... a ... 6 ...) 6 Ha Th 7,26 Every permitation can be presented as a product of transpositions. (not necessarily disjoint) Pf It suffices to present a cycle as a product of transpositions: (a,,,, ak) = (a,a)(a,a),,, (ak,ak) $a_1 \rightarrow a_2$ $a_2 \rightarrow a_3$ a, ma a, 100

Def A permutation is EVEN if it can be presented as a product of an even number of transpositions

Otherwise - ODD permutation.

Th 7.28 This parity is invariant (the definition is justified)